什么是美國AMC數(shù)學(xué)競賽?哪些人可以參加?
今天小編給大家詳細(xì)介紹美國數(shù)學(xué)競賽AMC發(fā)展史,及AMAC系列介紹!
AMC數(shù)學(xué)競賽成立時間及參賽規(guī)模
AMC是American Mathematics Competition美國數(shù)學(xué)競賽的縮寫,由美國數(shù)學(xué)協(xié)會于1950年成立。設(shè)置全球獎項(xiàng)、中國賽區(qū)獎項(xiàng)和學(xué)校團(tuán)體獎,優(yōu)秀者可晉級美國數(shù)學(xué)邀請賽(AIME),中國大陸賽區(qū)中英文試卷統(tǒng)一時間開考。
AMC數(shù)學(xué)競賽,每年全球30萬名同學(xué)參賽,可以說是全球最有影響力的青少年數(shù)學(xué)競賽之一。試題由簡至難兼具,使任何程度的學(xué)生都能感受到挑戰(zhàn),還可以篩選出特有天賦者。這項(xiàng)競賽就是為所有喜愛數(shù)學(xué)的學(xué)生所開發(fā)的。
AMC競賽適合于大學(xué)打算申請頂級名校理工類專業(yè)的同學(xué)參加。AMC和它晉級后能參加的AIME是美國大學(xué)申請最有價值的競賽和活動之一。美國大學(xué)申請的許多學(xué)校的表格中學(xué)生可以填寫AMC和AIME的成績。
AMC數(shù)學(xué)競賽被譽(yù)為世界名校的通行證,這項(xiàng)考試成績國際通行,因此在世界不同地區(qū)參加AMC考試,成為學(xué)生增加國際競賽經(jīng)驗(yàn),提升入學(xué)競爭力的重要途徑?,F(xiàn)在AMC不但成為美國數(shù)學(xué)人才的人才庫,其成績還是評估申請入學(xué)者數(shù)學(xué)科目上學(xué)習(xí)成就的重要依據(jù)。
美國數(shù)學(xué)競賽AMC系列競賽有哪些?
美國數(shù)學(xué)競賽是一系列考試和課程材料,旨在培養(yǎng)中學(xué)生解決問題的能力和數(shù)學(xué)知識。
-
American Mathematics Competition 8 (AMC 8) : AMC的中學(xué)級別競賽*
-
美國數(shù)學(xué)競賽 10/12 (AMC 10/12) : AMC的高中級別競賽*
-
American Invitational Mathematics Examination (AIME):為高分 AMC 10/12 參賽者舉辦的邀請賽*
-
美國數(shù)學(xué)奧林匹克競賽 (USAMO) 和美國少年數(shù)學(xué)奧林匹克競賽 (USAJMO):AMC 為 AIME 高分參賽者舉辦的頂級邀請賽*
-
The Putnam Competition:美國和加拿大一年一度的本科大學(xué)生數(shù)學(xué)競賽*
AMC8/10/12競賽考試形式及考試內(nèi)容介紹
AMC 8(八年級以下學(xué)生):
25道題,一題一分,做錯題不扣分。前5%的學(xué)生, 會獲得Honor Roll獎項(xiàng);前1%的學(xué)生將獲得Distinguished Honor Roll獎項(xiàng)。如果是六年級以下的小學(xué)生參加這個比賽,他們得到獎項(xiàng)的要求會低一些,大約答對15題左右即可。比賽題目的難度由簡單題,中等題和難度題三部分組成,不會讓學(xué)生上手就無所適從,以激勵低年級學(xué)生數(shù)學(xué)興趣為主要目的。
AMC8知識點(diǎn)分布:
基礎(chǔ)代數(shù):整數(shù),有理數(shù),無理數(shù),實(shí)數(shù),數(shù)軸和坐標(biāo)系;多元一次方程,簡單二次方程,簡單不等式,基本代數(shù)技巧。
基礎(chǔ)幾何:基礎(chǔ)幾何作圖,平面歐式幾何,點(diǎn),線,三角形,特殊四邊形,圓,規(guī)則圓形周長和面積,基本平面幾何技巧,規(guī)則立體幾何圖形。
基礎(chǔ)數(shù)論:奇偶分析,整除性質(zhì),最小公倍數(shù)和最大公約數(shù),同余問題。
基礎(chǔ)組合:韋恩圖,排列,組合和概率入門,階乘二項(xiàng)式系數(shù),楊輝三角形。
AMC 10(十年級以下學(xué)生):
共25道題,做對的題目得6分,不做的題目得1.5分,做錯題目得0分。前2.5%的學(xué)生會被邀請參加美國數(shù)學(xué)邀請賽(AIME)。在2008年后,規(guī)定不能使用計(jì)算器,而且題目難度有明顯提高。AMC 10一年考兩次,分別為AMC10A和AMC10B。同一考試在全世界同一天進(jìn)行,不能參加補(bǔ)考。從 AMC8到AMC10,跨度較大。
AMC10知識點(diǎn)分布:
進(jìn)階代數(shù):多項(xiàng)式,余數(shù)定理,韋達(dá)定理,根與系數(shù)的關(guān)系,特殊高次方程,進(jìn)階不等式,均值不等式,函數(shù)入門,定義域和值域,二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),簡單三角函數(shù),數(shù)列進(jìn)階,代數(shù)技巧進(jìn)階。
進(jìn)階幾何:進(jìn)階幾何作圖,三角形進(jìn)階,正弦定理,余弦定理,內(nèi)切圓和外切圓,思圖瓦爾特定理,共點(diǎn)和共線,圓和四邊形,四點(diǎn)共圓,圓的外切四邊形,正多邊形,角度,周長和面積,進(jìn)階平面幾何技巧,解析幾何入門。
立體幾何:點(diǎn),線,面的關(guān)系,三維坐標(biāo)系,立體幾何作圖,正多面體,歐拉公式,特殊的立體幾何圖形,立體幾何技巧。
進(jìn)階數(shù)論:數(shù),數(shù)組和序列,模運(yùn)算,復(fù)雜同余問題,整數(shù),分?jǐn)?shù),小數(shù),進(jìn)制轉(zhuǎn)換,基本丟番圖方程,進(jìn)階數(shù)論技巧。
進(jìn)階組合:容斥原理,二項(xiàng)式定理及相關(guān)結(jié)論,進(jìn)階排列,組合和概率,期望入門,遞推,二分法,進(jìn)階組合方法。
AMC 12(十二年級以下學(xué)生):
共25題,做對的題目得6分,不做的題目得1.5分,做錯題目得0分。前5%的學(xué)生會被邀請參加美國數(shù)學(xué)邀請賽(AIME)。和AMC10一樣,在2008年后,規(guī)定不能使用計(jì)算器,而且題目難度有明顯提高。一年考兩次,分別為AMC12A和AMC12B。多數(shù)留學(xué)黨由于國籍問題,止步于此級別。美加籍國際部學(xué)生可以考慮更上一層樓。
AMC12知識點(diǎn)分布:
包含AMC所有知識點(diǎn)和基本綜合問題。此外還有如下內(nèi)容:
進(jìn)階代數(shù):復(fù)雜不等式,調(diào)和不等式,輪換不等式,柯西不等式,復(fù)雜函數(shù)問題,反函數(shù)和符合函數(shù),三角函數(shù)和差化積,積化和差,萬能公式,復(fù)數(shù),復(fù)平面,歐拉公式,蒂莫夫公式,數(shù)學(xué)歸納法,復(fù)雜數(shù)列和極限。
進(jìn)階幾何:圓相關(guān)幾何進(jìn)階,數(shù)形結(jié)合,二維和三維圖形的函數(shù)表達(dá),進(jìn)階解析幾何,不規(guī)則二維和三維圖形的處理,二維向量,三維向量。
進(jìn)階數(shù)論:二次余數(shù),高次余數(shù),費(fèi)馬圣誕節(jié)定理,費(fèi)馬小定理,各類丟番圖方程解法。
進(jìn)階組合:隨機(jī)過程和期望,復(fù)雜組合問題技巧。
AIME:
通過AMC10和AMC12考試被邀請參加美國數(shù)學(xué)邀請賽的學(xué)生,會獲得數(shù)學(xué)上Achievement的認(rèn)可。一些知名大學(xué)和公司的表格上有一欄AIME的成績,美國麻省理工大學(xué)MIT的一些Camp就以能進(jìn)入AIME比賽為接受條件。學(xué)生(美加公民和綠卡)的AIME成績和AMC10或AMC12的成績加權(quán)綜合,將作為晉級參加USA(J)MO的標(biāo)準(zhǔn)。
USA(J)MO(相當(dāng)于美國數(shù)學(xué)奧林匹克):
AIME和AMC10或 AMC12加權(quán)后成績優(yōu)勝的學(xué)生,將會參加夏季隊(duì)(MOSP)集訓(xùn),最后從中選出6人代表美國參加國際數(shù)學(xué)比賽(IMO),僅限美國公民和綠卡。
|